If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4x^2+5x+1)=0
We get rid of parentheses
4x^2+5x+1=0
a = 4; b = 5; c = +1;
Δ = b2-4ac
Δ = 52-4·4·1
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3}{2*4}=\frac{-8}{8} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3}{2*4}=\frac{-2}{8} =-1/4 $
| (x^2+9x-3)=6x-5 | | (x^2+20x+45)=4x-3 | | 2^2x+3=8 | | 6-3(5t-13)=-30 | | 2y+200=42 | | x3+-3x+1=0 | | 5(u−2)+6=3(6−2u) | | (x^2+5x-14)=0 | | 2/3*x^2=3/2 | | 2/3x^2=3/2 | | 2(x-5)=-(x-2) | | 2x+16=48−2x | | (2x-1)*(2x+3)=-3 | | x=2x-9-3 | | 4x-1=14x-7 | | x=9+2x-3 | | 3×(x)=56 | | Y=4y+19(-32,3) | | 2(a+2)=2a+2 | | 2(a+2)=2a+4 | | 2/5x-11=13 | | 1/5x-10=3 | | (2x+4)+5x+15)=180 | | 2x+4+5x+15=180 | | 4x+6=6x+1 | | 2,7x=13,8 | | 2x=13,8 | | 3(x-1)-3(x+4)=5 | | 2x^2-1=2 | | 3(4x+2)=3x-39 | | 2(3x+5)=-38 | | 4(2x+2)=5x-7 |